czwartek, 13 listopada 2014

Oszustwo G.A.Jorgensena

Na III KS G.A.Jorgensena zaprezentował wykresy przedstawiające rzekomo wynik komercyjnych obliczeń metodą CFD.



Rys.1
Sam wygląd nasuwa podejrzenia, że z profesjonalnoscią produktu coś jest nie tak - dwie prostoliniowe końcówki przy czym pokrywające się dla 10 i 15 stopni, co omówiłem wcześniej. Z literaturowymi wykresami nie zgadza się opis osi y, co niestety prowadzi do niepewności, czy mamy do czynienienia z wykresami CL(y) czy też b(y)*CL(y), gdzie b(y) to bieżąca długość cięciwy.
Wykres może być albo tym, co jest po lewej, albo po prawej na rysunku zaczerpniętym z opracowania G.Kowaleczki.


Rys.2
Żeby nie pozostawić wątpliwości, uzupełniłem wykresy Jorgensena o wariant traktujący je jako faktyczne CL(y) i na ich podstawie sprządzone wykresy b(y)*Cl(y). Oczywiście dalej pozostają wyskalowane w sposób znany tylko Joregensenowi, ale niech tam. Tak więc po lewj mamy oryginalne wykresy Jorgensena a po prawej uzupełnione o domniemane wykresy iloczynu  b(y)*Cl(y). Domniemane, dlatego że już wykresy Jorgensena mogą być wykresami takich iloczynów.


Rys.3

Tak więc, albo wykresy po lewej, albo po prawej  są wykresami b(y)*Cl(y). 
Pole pod wykresem b(y)* Cl(y) niezależnie od tego, jak jest wysklalowany musi być proporcjonalne do siły nośnej, tak więc pola pod lewą (wariant 1), albo prawą (wriant 2) trójką wykresów, reprezentują jakoś tam wyskalowaną siłę nośną. 
Wykresy Jorgensena odnoszą się do sytuacji takiej samej prędkości samolotu i gęstości powietrza, więc siłę nośna można wyrazić poprzez bardzo prostą zależność od kąta natarcia:
                       siła_nośna = powierzchnia * stała * ( alfa - alfa_zero)
( Czasem stosuje się konwencję liczenia kata natarcia od "cięciwy zerowej siły nośnej" i wtedy alfa_zero = 0 ale kółko się zamyka, bo musimy znać kąt, od którego liczymy )
Dysponując trzema wartościami pól pod wykresami dla różnych kątów natarcia alfa metodą regresji linowej wyznaczam alfa_zero z pól pod rozkładami dla skrzydła całego, skrzydła uszkodzonego oraz sytuacji z wychyloną lotką i spoilerem.


Rys.4
Czytelnik z łatwością sprawdzi, że regresja jest bardzo dokładna - przewidywane dla 5,10 i 15 wartości  pól różnią się od wyliczonych z wykresów na ogół mniej niż o 1%
Nie ma fizycznej możliwości, aby kąty zerowej siły nośnej przybierały takie wartości - na ogół to około - 1,5 stopnia, a dla profilu NACA63012 - 1,3st.
Poprzednio przytoczona zależność siły nośnej od kąta natarcia ma odpowiednik lokalny uwaględniający fakt,  że doskonałość profilu może zmieiać się wzdłuż skrzydła z powodów konstrukcyjnych, oraz - co ważne - wychylenie płaszczyzny sterowej zmienia nie tylko kąt natarcia, ale i kształt profilu.
Podobne do zależności z tabelki można więc wyliczyć wykonująć regresję dla wartosci lokalnych.
Ograniczę się do dwóch rozkladów - nieuszkodzonego skrzydła oraz  z wychyloną lotką i spoilerem.
Oryginalne rokłady Jorgensena to pierwszy i trzeci po lewej stronie Rys.3.
Gdyby przedstwaiły b(y)*Cl(y), to potrzebne nam będą jeszcze rozkłady samego Cl(y), czyli rozkłady Jorgensena podzileone przez lokalną długość cięciwy.

 Rys.5
Wykresy tym razem są jako punkty dla pokazania czytelnikowi, że włożyłem nieporównanie więcej pracy w ich odczytanie i opracowanie, niż Jorgensen w komercyjne namazanie CFD.  
Po prawej stronie wykresy dla prawego skrzydła, po lewej dla sytuacji wychylonej lotki i spoilera. Regresją liniową wyliczam dla 20cm długości przedziałów wzdłuż półrozpiętości lokalne kąty natarcia zerowej siły nośnej. Na kolejnych wykresach kolor czerwony będzie oznaczał prawe skrzydło a zielony sytuację wychylonej lotki i spoilera.


Rys.6
Te wykresy muszą być niemal identyczne ponieważ lokalnie wartości dla obu wariantów różnią się o czynnik.  Skoro globalny kat natarcia zerowej siłu nośnej był bezsensowny, to jasne, że musiały na niego się złożyć  równie, a nawet jeszcze bardziej niefizyczne wartości lokalne - poniżej -16 stopni na odcinku ponad 5,5 metra.
Lokalne współczynniki regresji, to coś, co jest proporcjonalne do czynnika zależnego od profilu we współczynniku siły nośnej (ze względu na wadliowość wyskalowania wykresów przez Jorgensena jestem zmuszony do stosowania tak opisowego nazywania wyliczonych wartości).


Rys.7
Po pierwsze widać, jak dziwne rzeczy dzieją się na odcinkach odpowiadających urwanemu fragmentowi. Oglądając wykresy z Rys.6 i 7 należy pamiętać, że one mają już nie zależeć od kąta natarcia. Albo te po lewej, albo po prawej opisują własności profilu - gdyby takie były, to by znaczyło, że kiedyś w przeszłości konstruktorzy przewidzieli jego urwanie na brzozie i końce skrzydeł zaprojektowli jako jakieś pokręty, a wizualne podobieństwo tego fragmentu skrzydła Tu-154 do końców skrzydeł innych samolotów to tylko element wszechogarniajacej maskirowki. .
Po drugie - można się doszukać pewnych poszlak, czego wykres Jorgensen miał zamiar pokazać. Dopiero po podzieleniu przez lokalną długość cięciwy, lokalne współczynniki regresji na dwóch odcinkach są w miarę stałe, co odpowiadało by stałości czynnika związanego z profilem. Bez podzielenia ten czynnik niemal liniowo malał by z też liniowo malejącą długością cięciwy, od której nie powinien zależeć.

Wykresy pokazane przez Jorgensena to prymitywne i bezczelne oszustwo, one, bez wzgledu na to, jak są wyskalowane, nie mogą opisywać rzeczywistości. Jorgensen nie mógł danych pochodzących z "obliczeń CFD", których wynikiem mają niby być te wykresy, używać do symulacji obrotu, bez wzgledu na to, czy stosował stary, błędny algorytm znany z prezentacji dla ZP i materiałów II KS, czy też usunął już z niego błąd polegający na nierozróżnianiu kątów natarcia, pochylenia i wznoszenia. Ja na pomysł takiego ich sprawdzenie wpadłem, ponieważ przy próbie liczenia asymptotycznej prędkości obrotu wychodziły kompletnie absurdalne wartości. Próbując potraktować owe rozklady poważnie straciłem sporo czasu - nie przyszło mi do głowy, że te wykresy nie przedstawiają zupełnie niczego - są po prostu krzywo i bezsensownie namazane paluchem. Sądzę, że ten wykres więcej nie ujrzy światła dziennego. Jorgensen poszuka innych dowodów swojej racji - czegoś na podobieństwo soku brzozowego albo kodów paskowych skarpetek z Wal-Martu  Cieszewskiego.


Post scriptum
Ponieważ jestem zapewne jedynym posiadaczem "wyników obliczeń CFD Jorgensena" w postaci liczbowej, chętnie na prośbę czytelników je udostępnię - również, a nawet przede wszystkim, Jorgensenowi :)))

niedziela, 2 listopada 2014

Po III Konferencji Smoleńskiej

Sądząc po liczbie wygłoszonych referatów, niezależne badania, których okresowymi podsumowaniami miały być konferencje smoleńskie, wydają się mieć apogeum za sobą. Równocześnie ich środek ciężkości przesunął się w stronę zdecydowanie bardziej literacko atrakcyjnego nurtu maskirowki. Utyskiwania mecenas Szonert na prześladowania badaczy przy tryskającym werwą Grzegorzu Braunie zabrzmiały nieśmiało i nieświeżo. Nurt techniczny, do niedawna w opozycji wobec maskirowki, wydaje się wygasać, a jego eksponenci, zdani na łaskę GaPola i wpolityce.pl,  chyba zajmują na razie pozycję wyczekującą. W tym nurcie na II KS pojawiły się referaty póki co prezentujące jeszcze neutralność światopogladową, jeżeli chodzi o stosunek do maskirowki, jednak  należące do nurtu alternatywnych nauk ścislych.

UGIĘCIE BINIENDY - nikt nie zastawi bardziej zdradzieckiej pułapki na Biniendę niż on sam
.
Po wielu różnych koncepcjach zachowania się pnia po kolizji z brzozą zależnych od tego, czy ma on zrobić miejsce dla skrzydła poruszającego się z pozytywnym kątem natarcia lub bez, Binienda w końcu chyba "ustabilizował" właściwości mat.143 czyli pnia, skoro przeszedł do takich szczegółów, jak animowanie  zachowania slotu i poniższy zrzut obrazuje dokładnie zachowanie pnia po przecięciu go przez skrzydło.



























Rys.1

Analizowana klatka przedstawia skrajne (lub bardzo bliskie skrajnemu) ugięcie. W tym punkcie prędkość a zatem energia kinetyczna pnia są zerowe. 
Posiłkując się grubością dolnej części pnia brzozy - 0,44m oraz średnicą kadłuba oszacowałem, ze dolna strzałka ugiecia wynosi 1,44m, górna 2,16m a średnica górnej części pnia średnio 0,31m. Długość dołu przyjąłem 6,7m - to więcej niż podaje Binienda, a góry 8,4m - tyle, ile widać na animacji, na której wyraźnie też widać, że co najmniej metr od góry drzewo nie ugina się.
Użycie w oszacowaniach wartości strzalki ugięcia wystarczająco uzasadnia sam fakt podania przez Biniendę modułu Younga (10300MPa), oraz widoczne na kolejnych klatkach odbicie pnia w drugą stronę.













Rys.2

Poza tym na Figure 82 w https://www.fhwa.dot.gov/publications/research/safety/04096/04096.pdf znajdujemy wyraźnie paraboliczne początkowe fragmenty potwierdzajace, że w tym zakresie  energia potencjalna jest proporcjona do kwadratu wychylenia, z tego zaś, że jej pochodna po wychyleniu, czyli siła, jest proporcjonalna do samego wychylenia. Tak więc możemy zupełnie spokojnie stosować wzór na strzałkę ugięcia
        delta = F * l^3 * / 3 * E * Pi * r^4  
z którego wyliczazmy  siłę
        F(delta) = delta * 3 * E * Pi * r^4 / L^3 * 4
gdzie r - promień ; L - długość, czyli wysokość pnia ; delta - strzałka ugięcia ; E - moduł Younga sprężystości. (we wzorze kursywą wyróżniłem czynniki zwykle wyodrębniane jako moment bezwładności przekroju).
Praca wykonana na pokonanie siły spężystości to:
        F(delta)*d(delta) w granicach od 0 do maksymalnej strzałki ugięcia.
Dla dolnej części pnia ta praca, czyli energia potencjalna sprężystości wynosi 195KNm a dla górnej 55KNm , co w sumie daje 250KNm.
Taką energię, tym razem kinetyczną, masa pnia musiała uzyskać w czasie kontaktu  ze skrzydłem. Jeżeli ten kontakt odbywalby się na drodze równej długosci cięciwy skrzydła, to mamy sytuację z symulacji "bielskiej" - uszkdzone dolne poszycie, jeżeli natomiast na drodze równej średnicy pnia, to prowadzi do średniej siły 568KN - około dwukrotnie przekraczjącej szacunki siły potrzebnej do zniszczenia okolicy pierwszego dźwigara, w tym moje wykonane na podstawie eksperymentu strzelania garnkiem ( http://mjaworski50.blogspot.com/2014/07/wybuchy.html ). Sytuacja trochę przypomina zapętlenie się Biniendy z grubościami poszycia i dźwigara, kiedy to we wszystkich symulacjach przednia krawędź rozpadała się jak papier - nawet kiedy miała 5mm grubości, a pierwszy dźwigar bez szwanku dla siebie zawsze przecinał brzozę - mimo, iż w innych symulacjach miał też 5mm grubości.


CFD JORGENSENA - czy on cokolwiek z tego rozumie?

Jorgensen przedstawił interpretację fragmentu wykresu kąta przechylenia z raportu KBWL.


















Rys.3

Nie ma ona pokrycia w zarejestrowanym wychyleniu prawej lotki, które rosło już przed tym fragmentem (Rys.3). Na wykresie wychylenie spoilera jest proporcjonalne do wychylenia lotki, więc nie ma potrzeby go tu pokazywać. Poza tym jego koncepcja zdradza, że nie ma pojęcia, tworzeia jakiej skali momentów wymaga od lotki.(refareat M.J. na I KS)
Pokazanie przez Jorgensena rozkładu czegoś tam wzdłuż półrozpiętości skrzydeł w zamierzeniu miało znokautować opracowanie Grzegorza Kowaleczki posługującego się między innymi rozkladami otrzymanymi poprzez  obliczenia przy pomocy aparatu mechaniki środowisk ciągłych.































Rys.4


Pierwsza wątpliwość, jaka się rodzi, to dlaczego w poblizu kadłuba (żółte prostokąty ) wykresy dla prawego i lewego skrzydła różnią się. Te części są oddzielone gongolami podwozia są od pozostałej części skrzydła, na której jest spoiler i lotka i to, co dzieje się na zewnątrz podwozia, nie powinno mieć wpływu na rozkłady pomiędzy podwoziem i osią kadłuba..
Przyjrzyjmy się dokładnie końcowym fragmentom wykresów które zacieniowałem na różowo, kóre odpowiadają urwanemu fragmentowi skrzydła.
Wykresy dla 10 i 15 stopni, które  na poprzednim fragmencie wizualnie zachowują proporcjonalność do kąta  natarcia, nagle stają się trudno rozróżnialane, podczas gdy wykres dla 5 stopni leży niżej.
Wszystkie trzy wykresy z wychyloną lotką (skrzydło prawe) falują, podczas gdy z lotką niewychyloną tylko ten dla 10 st.
Ten fragment wykresu jest najprawdopodobniej bezmyślnie improwizowany. Jedynie wykresy dla 10 stopni z wychyloną i niewychyloną lotką na pierwszy rzut oka wyglądają spójnie.
O ile można się domyslić, że ośi x to odległość od osi kadłuba w metrach, to znaczenie skali y jest nieznane.
Wykresy sprawiają  wrażenie wykonanych dosyć nieudolną ręką i to w niedoczasie. Przy użyciu stosunkowo prostych metod i darmowych programów skan z książki można doprowadzić do postaci znacznie lepiej udającej profesjonalny produkt, zaś uzyskanie czegoś pokazanego przez Jorgensena przy pomocy komercyjnego narzędzia jest wykluczone.
Lewą część rozkładu odbiłem, aby lepiej korespondowała z następnymi wykresami. Następnie  zdgitalizowane wartości "zortorektyfikowałem" (trzeba być trendy) przy pomocy dolnej osi i napisów oraz wstępnie znormalizowałem tak, żeby dla każdej trójki wykresów odpowiadających jednemu kątowi natarcia dystrybyanty rozkładu od osi do drugiego minimum (gondola podwozia) były sobie równe. Fizyczny sens tego jest taki, że jest to część skrzydła separowana gondolą, samym podwoziem oraz grzebieniami aerodynamicznymi od tej, gdzie jest spoiler i lotka na prawym skrzydle, a lewe zostało pozbawione końca i w tym obszarze siły nośne powinny być równe na obu skrzydłach. Na wykresach (Rys.5, 6, 8 i 9 ) kolor czerwony to rozklad dla lewego skrzydła, a niebieski dla prawego z wychyloną lotką - na wykresie Jorgensena przerywane linie. Rozkład współczynnika siły nośnej wyrażam w pikselach - tak jak się zdigitalizowało, ponieważ trudno powiedzieć, co Jorgensen miał na myśli, oznaczając na osi zmiennej zależnaej  trudne do odczytania liczby, których znaczenia nie udało się ustalić u najbardzziej do krynicy prawdy zbliżonego blogera. Dla dalszych rozważań istotne jest założenie, że wszystkie rozkłady wyrażone sa w tych samych, znanaych, badź nie, Jorgensenowi jednostkach oraz, że zwężenie skrzydła wynosi 3,484 -   relacje liczb i wnioski pozostaną takie same. W dalszych rachunkach rozkłady skaluję, mnożąc przez taki czynik, aby po scałkowaniu z lokalną długością cięciwy siła nośna  wynikająca z rozkładu dla 5 st. odpowiadała 1g.
Przyglądnijmy się jednemu z tych rozkładów. 




Rys.5 


Z rozkładu współczynnika wyliczam rozkład siły nośnej. W prawym górnym rogu wykresu wypisałem całkowite siły dla skrzydła i tworzone przez nie momenty obrotowe. 














Rys.6

Dla kąta natarcia 5 stopni  momenty tworzone przez lewe uszkodzone i prawe z wychyloną lotką oraz spoilerem skrzydla są niemal równe. Dla większych kątów natarcia prawy moment będzie większy od lewego - wychylenie w górę lotki i spoilera nie jest w stanie wystarczająco zmniejszyć siły nośnej. Jest to, zgodne z dobrze znanym wykresem z opracowania NASA i wydaje się, że pod ten nagłośniony wykres było tworzone. Z opracowania NASA wynika, że utrata fragmentu skrzydła o półrozpietosci 26 do 33 % jest możliwa .do skompenowania wychyleniem przeciwnej lotki, jeżeli samolot leci z kątem natarcia 3,5 do 5 stopni.  Utrata fragmentu skrzydła to tak jakby wytworzenie na stałe na tym fragmencie zerowego współczynnika siły nośnej. Żeby to skpompensować, trzeba na jego odpowiedniku po przeciwnej stronie wytworzyć zerową wypadkową siłe nośną ( precyzyjnej - zerowy moment siły nośnej). Uwaga - lotka nie jest na całym fragmencie - na zmianę kata natarcia na fragmencie bliższym kadłuba nie ma wplywu - tam kąt natarcia pozostaje taki, jaki był i współczynnik siły nośnej (poza zaburzeniami na granicy) też. Wobec tego na obszarze z lotką trzeba wytworzyć ujemną siłę nośną, ujemny kąt natarcia, ujemny współczynnik siły nośnej. Jorgensenowi, kiedy dorysowywał ten fragment, zabrakło wyobraźni - jeżeli jest to przypadek kąta natarcia, przy którym urtatę fragmentu skrzydła można zrekompensować wychyleniem przeciwnej lotki, to na Rys. 5 w miejscu lotki ujemny.
























Rys.7



Wyjaśnienie przyczyny ograniczeń kąta natarcia oraz oszacowanie kąta, dla jakiego, bliską smoleńskiej utratę fragmentu skrzydła, można zrównowazyć wychyleniem przeciwnej lotki, zawarłem w (http://mjaworski50.blogspot.com/2014/07/beczka.html . Tam też jest bardzo proste geometryczne wyjaśnienie, że lotka wychylając się o 20 stopni może zmienić lokalny kąt natarcia o okolo 6 stopni, więc przy mniejztch kątach natarcia lokalny współczynnik siły nośnej na fragmencie z lotką będzie ujemny.

Przejdźmy do rozkładu dla 10 stopni kąta natarcia,  którego wzrokowa ocena wygląda pozytywniej.


.










Rys.8

Tak wygladają wyliczone z niego rozkłady siły nośnej. 


Rys.9

Rozkład uzupełniłem o pośredni, ponieważ, bez względu na to, czy rozkłady Jorgensena są prawidłowe, prawa lotka w ostatnich sekundach nie przez cały czas jest maksymalnie wychylona, ale średnio o -11 stopni przy położeniu neutralnym -1 st. (Rys.10) i do rachunków należało by raczej brać kombinację rozkładu szarego i niebieskiego w proporcjach 0,46 do 0,56
.

Rys.10

Z obu rozkładów wynika ekscentryczne pojmowanie przez Jorgensena geometrii utraty fragmentu skrzydła. 
Dla kąta natarcia 5 st. promień dla momentu utraconej siły nośnej wynosi:
(2676kNm - 2092kNm)/(383kN - 339kN) - 13,1m a dla kąta natarcia 10 st.:
(3602kNm - 2699kNm)/(537kN - 468kN) - 13,2m .
Wynika z tego, że Jorgensenowi w obu przypadkach odleciały nie całe fragmenty - na skrzydle pozostały punkty przyłożenia siły nośnej! (taka sytuacja jest możliwa dla obiektów o topologicznych własnościach rogalika, ale urwany fragment ma własności kromki  - jest wypukły). 











Jak można się było po wyglądzie końcówek spodziewać, analiza iloścowa końcówek wykresów wypada dla autora druzgocąco.


















Rys.11 

Dla lepszej przejrzystości pokazuję końcówki tylko dwóch wykresów siły nośnej (linia przerywana to - jak u Jorgensena  rozkład siły nośnej po maksymalnym wychyleniu lotki i spoilera ). W tabelce zawarłem   wartosci siły nośnej przypadające na fragment skrzydła ze spoilerem (niebieski na Rys. 5), fragment z lotką (czerwony na Rys. 5) oraz odstęp pomiędzy nimi. Nie wypisywałem danych dla wychylenia lotki, tylko związany z tym spadek siły nośnej  na danym fragmencie.



Rys. 12





Rys. 12a

Jedynie wartości dla fragmentu ze spoilerem pozostają ze sobą w sensownym związku i zostały najprawdopodobniej jakoś przekształcone z prawidłowego rozkładu. Pozostałe są chaotyczne, a są to dane dotyczące fragmentu, który miał się urwać. Siła nośna dla 10 i 15 stopni wytwarzana przez ten fragment przy 10 i 15 stopniach kąta natarcia jest taka sama. Rys.12a przedstawia zmianę siły nośnej wywołaną wychyleniem spoilera i lotki. Wykresy wszystkich różnice powinny być zbliżone do siebie a róznica rozkładów dla 15st. kąta natarcia wyraźnie odbiega od pozostałych na odcinku mniej więcej pokrywającym się z urwanym fragmentem. Wniosek może być tylko jeden - ten fragment wykresów został zaimprowizowany, a na spójną z poprzednimi improwizację rozkładu dla 15st. Jorgensenowi zabrakło czasu.
Gdyby Jorgensen, adaptując dla swoich potrzeb gdzieś wynalezione jakieś rozkłady wspólczynnkia siły nośnej policzone CFD, rozumiał fizyczne aspekty zagadnienia, zadbałby, aby nie popaść w absurdy. Niestety, nie dość, że nie rozumie tego, co robi, to jeszcze pokazał lekceważenie słuchacza popełniając niedoróbki graficzne, które wskazałem na początku omawiania "CFD". 
Podsumowując ten fragment - wygląd wykresów przedstwiających współczynniki siły nośnej, brak, lub błędna ( to wynika z komentarzy Forda Prefecta, któremu coś udało się odcyfrować ) skali na osi y, oraz wynikające z nich absurdy fizyczne świadczą, iż nie są wynikiem  obliczeń CFD ani nawet przyzwoitej adaptacji literaturowego rozkładu. W szczególności wykresy odpowiadające urwanemu fragmentowi są prymitywnie domazane. Używanie ich do jakichkolwiek dalszych wyliczeń nie ma sensu.

Jorgensen z pewnością powtórzył wyniki pochodzące z dawniejszych opracowań. Skoro nie przedstwił nowego,  poprawnego pojmowania kątów natarcia, pochylenia i wznoszenia, zostały one uzyskane obliczeniemi przy pomocy błędnego algorytmu. Poniżej skrócona historia bezskutecznego zmagania się Jorgensena ze zrozumieniem, że samolot lata dzięki tajemniczenu kątowi natarcia.















Rys.13

Skoro Jorgensenowi bardzo zależy na uwzglednieniu zmienności kąta natarcia, którego w jego bardzo uproszczonym modelu po prostu nie ma, spróbuję mu pomóc obejśc jego problem. Jak sam napisał, choć nie wiadomo, czy rozumiał, co pisze, siła nośna jest proporcjonalna do kąta natarcia. Tak więc aktualna siła nośna jest proporcjonalna do efektywnego kąta natarcia. Z drugiej strony ta siła nośna jest proporcjonalna do przeciązenia pionowego, a ono jest rejestrowane.



Rys.14.

Siły w kółku nie ma, bo nie ma tego fragmentu skrzydła ( gdyby była, samolot zaczął by się obracać w przeciwną stronę ). 
Oznaczmy sobie przez x ułamek utraconej siły nośnej, przez F całą siłę nośną, przez Va rejestrowane przeciążeniae pionowe,  przez m masę ( przyjmę 78 200 kg) . Z moich wcześniejszych wyliczeń (http://mjaworski50.blogspot.com/2014/07/beczka.html ) wynika, że średni promień dla momentu siły uraconego fragmnetu R = 15,5m.
Wtedy
           F*(1-x) = Va * m
Zaś równanie obrotu przyjmie postać
           I * d(omega)/dt = m*R*Va*x/(1-x)
Przy takim podejściu nie mamy w postaci jawnej składnika tłumienia obrotu.
Moment bezwładności wokół osi kadłuba przyjmuję I = 1670kgm
Całkując dwukrotnie to równanie obrotu i dopasowując kąt przechylenia do zarejestrowanego wyznaczam x  W szczegółach procedura przedstawia się nastepująco:
1. Korzystam z modeli przeciążeń pionowych  wykorzystując raporty MAK (żólte trojkąty)  i KBWL (zielone trokaty). Jako jeden model biorę (3* mniejsze + więkze)/4, jako drugi (3*większe + mniejsze)/4. Powinno to zadośćuczynić niepewności co do rzeczywistych wartości wynikającej z różnic w zarejestrowanych przebiegach.













Rys.15

2. Całkownia wykonuję metodą punktu środkowego.
3. Rozwiązanie dopasowuję do obu zarejestrowanych przebiegów kąta przechylenia minimalizując średniokwadartowe odchylenie względne. Pozwala to wyznaczyć korytarz błędu dla przebiegu ekstrapolowanego na zakres, gdzie pomiary nie wystepują.
a) jako pierwszy przebieg prędkosci przechylenia.










Rys.16

Widać, że po około sekundzie  przekracza zakres maksymalny zakres 18 st./s rejestrowany przez MRSP..  
b) rozwiązania przy dobranych x dla obu modeli niemal pokrywają się.















Rys.17

Możliwy jest szeroki zakres końcowego przechylenia - obejmujący wartość MAK, KBWL oraz wyliczoną przez Grzegorza Kowaleczkę.
Wartości x to 0,049  dla modelu "mniejszego przeciążenia" oraz  0,0425 dla "większego" czyli około 4,5 %.
c) na koniec wykres siły oraz pogladowy ( uśredniony na odcinek 0,75s ). powodującej obrót.











Rys.18.

Okazuje się, że dla wykonania obrotu powyżej 90 stopni wcale nie jest potrzebna tak duża nierównowaga sił, o jakiej zwykle się mówi. Wystarczy, żeby działała cały czas - wtedy predkość kątowa stale rośnie zamaist osiągnąć wartość asymptoytyczną, czy też maleć, co skutkiem zastosowania błędnego wzoru  wyszło Jorgensenowi.
Na podstawie powyższych obliczeń można twierdzić, iż przebiegi przeciążeń, kątów przechyleń oraz podawane w częsciach opisowych raportów wartości kąta przechylenia nie są sprzeczne. Jednakże, biorąc pod uwagę różnice pomiędzy trajektorimi 06.04 oraz 10.04 omawianymi przeze mnie na I KS oraz Marka Czachora 05.02.2013 oraz różnice w prędkościach kątowych generowanych przez lotki uważam, że rejestrowane parametry lotu nie odzwierciedlają się na tyle dokładnie w prędościach i  współrzędnych samolotu,  iżby można było kusić się o  ich dokładne wyliczenie.


JABCZYŃSKI - dowód "z pantofla"

Komentarz ilustracyjny do wystąpienia wschodzącej gwiazdy obywaltelskiego śledztwa smoleńskiego.

































.



















PRAWDA na razie uciekła
ale będzie goniona przez kolejny rok, a może i dłużej, bo zamykający Konferencję Przewodniczący Komitetu Naukowego przez moment wydawał się watpić w sens organizowania konferencji za rok.






niedziela, 7 września 2014

Przed III Konferencją Smoleńską

08.092014 15:20 Z ostatniej chwili - tajne zwoje smoleńskie zaczynają powoli wypływać.
Szanowny czytelniku - jeżeli zauważysz, że powołałem się na tezę któregoś z autorów, sprzeczną z tym, co zamieścił on w materiałach II to poczynię sprostowanie.
08.092014 17:10 Na razie wypłynłęły  ciekawostki związane z sensacyjnym odkryciem Ch.Cieszewskiego.


Jak widać, pod jego sensacjami nie podpiasli się naukowcy wymieniani w czasie konferencji jako współautorzy odkryć.  


Materiały z II Konferencji Smoleńskiej nadal pozostają ściśle strzeżoną tajemnicą, więc zamiast zamierzonej recenzji przedstawiam analizę krytyczną opartą na prezentacjach z konferencji oraz późniejszych wystąpieniach G.A. Jorgensena, W.Biniendy i K.Nowaczyka.


09.09. 2014 Materiały już wypłynęły. Po lekturze referatów wymienionych wyżej autorów stwierdzam, iż poniższy tekst może być traktowany jako recenzja, chociaż Binienda niektórych swoich rewelacji ogłaszanych w czasie różnych wystąpień w tym w trakcie prezentacji na piśmie już nie powtórzył. 

Przystępując do rozwiązania nieznanego sobie problemu na drodze rozważań teoretycznych, niezależnie czy będzie się stosowło stosunkowo prosty aparat obliczeniowy, jak Jorgensen, czy bardzo zaawansowany, jak Binienda, bezwzględnie należy najpierw sprawdzić, co w tej materii zostało już wykonanane a przede wszystkiem, czy są odniesienia do rzeczywistości. Tym bardziej, jeżeli otrzymane wyniki budzą kontrowersje.

Pracy G.A.Jorgensena nie sposób omówić bez odwołania się do opracowania G. H. Shah, „Aerodynamic effects and modeling of damage to transport aircraft”, NASA Technical Reports,

Rys.1

Znajdujemy w nim wykres, z którego wynika, że zrównoważenie przeciwną lotką utraty około 30% półrozpiętości skrzydła jest możliwe przy kątach natarcia około 4 st (zacieniowane na zielono) - wielokrotnie mniejszych, niż był w Smoleńsku w okolicach brzozy. Przy większych kątach natarcia następuje niekontrolowany obrót.

Z czego to wynika - utrata fragmentu skrzyda to, ograniczając się do obrotu wokół osi kadłuba, sytuacja taka, że ten fragment nie wytwarza już siły nośnej. Można to zrównoważyć wytwarzając po przeciwnej stronie sytuację, że symetryczny do niego fragment też nie będzie wytwarzał siły nośnej. Dla uproszczenia założmy, że został utracony tyko fragment z lotką - wtedy przeciwną lotkę należy tak ustawić, aby kąt natarcia na tym fragmencie był zerowy ( posługuję się odniesieniami do cięciwy zerowej siły nośnej ).
Odpowiedź, o ile wychyleniem lotki da się zmienić kąt natarcia zawarta jest w maksymalnym wychyleniu lotki i relacji długości jej cięciwy do cięciwy całego skrzydła - to około 6 stopni.

Rys.2

Ponieważ w Smoleńsku został urwany większy fragment skrzydła, automatycznie kąt natarcia, przy którym jest możliwe powstrzymanie obrotu, musi być mniejszy.
Szczegółowa analiza pracy lotek na zakręcie proceduralnym, którego parametry są w raportach, prowadzi do wniosku, że po utracie takiego fragmentu skrzydła, jak w Smoleńsku, asymptotyczne prędkości obrotu rzędu kilkudziesuęciu stopni na sekundę sa prawdopodobne. Tak więc Jorgensen musi się mylić i pozostaje znaleźć w jego obliczeniach miejsce błędu. W późnijszej pracy Jorgensena jest mniej więcej taki sam przebieg prędkości obrotu jak w jego pierwszym opracowaniu dostepnym wczesniej na stronie ZP.
Poza wytknięciami G. Kowaleczki dotyczącymi poszczególnych charakterystyk, w modelu Jorgensena tkwi błąd skwitowany przez Kowaleczkę następująco:

Rys.3

a szkoda, bo ten błąd po pierwsze stawia pod znakiem zapytania kompetencje Jorgensena w zakresie mechaniki lotu, po drugie jest głównym żródłem jego sensacyjnych wyników. W zaznaczonych instrukcjach z opublikowanych skryptów Jorgensena współczynnik „gamma” odpowiada za zmianę siły nośnej fragmentu skrzydła i całości, która według słów autora jest spowodowana zmianą kąta natarcia.

Rys.4

Gdyby to znalazło odzwierciedlenie we wzorach, byłoby wszystko w porządku. Niestety z kątem natarcia ma niewiele wspólnego – współczynnik jest wyliczany z kąta wznoszenia, co widać w opublikowanych przez Jorgensena skryptach. W obu skryptach opisałem trzecią od końca instrukację, w której wyliczane z kąta wznoszenia (Vz/Vplane wyraża kąt wznoszenia a nie kąt natarcia) jest wyrażenie podstawiane w ostatniej instrukcji do współczynnika „gamma”. Ponieważ błędnie wyliczone „gamma” wchodzi (zaznaczone w wierszu czwartym) do wyliczania trajektorii pionowej i poziomej, one też są liczone źle.

Rys.5

W pózniejszym opracowaniu na stronie ZP (ten skrypt jest również w materiałach II KS) wzory wyglądają nieco inaczej, ale nie lepiej – znika wprawdzie opór prostopadły do płaszczyzny skrzydła, ale dalej nie mamy uzależnienia od kąta natarcia.

Rys.6

W modelu Jorgensena nie ma równania ruchu pochylającego, dlatego u niego kąt natarcia powinien być stały, co prowadzio by do stałej asymptotycznej prędkości obrotu.
Czyli tak, jak na lewym wykresie.

Rys.7


W opracowaniu na stronie ZP znajduje się rysunek, który rzuca nieco światła na rozumowanie Jorgensena.

Rys.8


Jorgensen nic sobie nie upraszcza, tylko myli pojęcia i układy odniesienia. Według tego rysunku Vz powinno być równe zeru a nie zmieniać się. Generlnie trudno jednak powiedzieć, co twórca miał na myśli - najprawdopodobniej próbował zaimplementować stwierdzenie z raportu KBWL, że kąt natarcia w końcówce malał – niestety błędnie, co .wcześniej omówiłem. Niebieskim naniosłem poprawki ( z uproszczeniem – pominąłem zakinowany kąt natarcia ).
Niestety nie ma również możliwości uzmienniania kąta natarcia przy pomocy parametrów z FDR. Czujnik w którymś momencie został najprawdopodobiej uszkodzony przez gałęzie. Nie ma też możliwości oszacowania kąta natarcia poprzez kąt pochylenia, bo ten w ostatnim malejącym zakresie był, podobnie jak kąt przechylenia, rejestowany nieprawidłowo (casus Domodiedowo) a kąt wznoszenia, (poprzez prędkość wznoszenia) jest również wyliczny w symulacji. Jedyny możliwy sposób uzmmienienia kąta natarcia to wykorzystanie przebiegu wychylenia steeru wysokości oraz ciągu, do czego Jorgensen jeszcze nie jest przygotowany. Na razie powinien bezwzgęlnie poprawić swój, zresztą bardzo prosty, model. Ale po poprawkach dostanie w przybliżeniu ponad sto stopni finalnego obrotu, co widać z lewego wykresu na Figure 13. Póki co, jego symulacja jest bezwartościowa. W tekście Jorgensena znajduje się sporo fragmentów, których analiza jest trudna i zbędna, ponieważ autor nie za bardzo wie, o czym pisze i w tym tkwi źródło jego dobrego samopoczucia.

Rys.9



Nie jest to pierwszy przypadek, kiedy eksperci z tego grona nie rozróżniają kątów natarcia, wznoszenia i pochylenia.

Najgłośniejsza symulacja W.Biniendy - kolizji skrzydła z brzozą ma odniesienie do rzeczywistosci - są to crash testy Dc-7 i Lc-1649. W obu kolizja koncówki skrzydła ze słupami telegraficznymi doprowadziła do urwania tejże końcówki i równoczesnego złamania słupa.

Rys.10

Oba testy były wykonane z prędkościami bardzo podobnymi do smoleńskiej. Binienda omawiając swoje symulacje posługuje się pojęciami „wzmocniłem” i „osłabiłem” ileś razy, nie precyzując, czy oznacza to zwiększenie o ten czynnik rozmiarów liniowych, powierzchni przekroju, czy też parametrów wytrzymałoścowych skrzydła i drzewa, wobec czego należy zastosować jedyne sensowne rozumowanie - dla skutków kolizji „odsłabienie” o ten sam czynnik jednego kolidujacego elementu oznacza to samo, co „wzmocnienie” o ten czynnik drugiego elementu. Dla skrzydła pod pojęciem „słabe” lub „mocne” należy w tej konwencji rozumieć wytrzymałośc na ścinanie i na zgnianie. Tę przy pomocy takich parametrów jak rozpiętość i masa jednego samolotu możemy w konkretnym miejscu porównać do wymaganej dla innego samolotu w innym miejscu, ponieważ samoloty są tej samej klasy, mają konstrukcję półskorupową i podobny stosunek masy własnej do startowej. Wyniki porównań do Tu-154 zestawiłem w tabelce. Obliczenia momentów i sił wykonane są dla lotu poziomego.

Rys.11

Po pierwsze widać, iż o skrzyde DC-7 możemy powiedzieć, że było w miejscu kolizji mniej więcej czerokrotnie słabsze i poległo w zderzeniu z cieńszym od brzozy słupem. Binienda mówiąc o czterokrotnym osłabieniu skrzydła Tu-154 uczynił je podobnie mocnym, jak skrzydło DC-7, więc w zderzeniu z grubszą od słupa brzozą powinno polec, a w żadnym razie na drodze rzetelnych obliczeń Binienda nie mógł otrzymać wyników upoważniających do kategorycznegp stwierdzenia przeciwnego. Ze skrzydłem Lc-1649 sprawa przedstawia się dla Biniendy jeszcze gorzej - jest tylko około półtora raza "słabsze" w miejscu kolizji od skrzydła Tu-154. Zaś mówienie przez Biniendę o tym, że brzozę wzmocnił dziesięcioktotnie, co odpowiadłoby dziesięciokrotnemu osłabieniu skrzydła Tu-154 to czysty absurd - takie skrzydło byłoby wielokrotnie słabsze od skrzydeł Dc-7 oraz Lc-1649, których końcówki zostają oderwane na skutek kolizji ze słupami. Ponieważ Binienda uzyskał wyniki dla obiektów wielokrotnie wzmacnianych lub osłabianych na drodze takich samych obliczeń, co dla obiektów rzeczywistych, a wyniki są na pewno błędne, to obliczenia muszą być błędne w ogóle, czyli dla elementów o rzeczywistych parametrach również.
W różnych wystąpieniach Biniendy nie znajdziemy ani parametrów wytrzymałościowych brzozy ani grubości elementów skrzydła przyjmowanych w poszczegółnych symulacjach a na zrzutach z pokazywanych przez niego wizualizacji widać, że musiały być różne.

Rys.12

Jedyne podane przez niego wymiary - 5 do 20 mm grubości ścianki dźwigara nie obejmują rzeczywistej grubości około 3 mm. Brak w którejkolwiek symulacji jakiegokolwiek efektu dla drzewa kolizji z poszyciem, którego maksymalna grubość w jego symulacjach miała mieć 5 mm, czyli tyle samo co minimalna ścianki dźwigara, która zawsze radziła sobie z pniem bezproblemowo, potwierdza, że w jego symulacjach parametry były dobierane tak, aby uzyskać założony wynik. Wielość wypowiedzi i kategoryczność wniosków doprowadziła Biniendę do sytuacji bezustannego popadania w sprzeczności.

Niestety Binienda nie wyciaga wniosków z jedynego wartościowego eksperymentu przez siebie wykonanego - strzelania cylindrem.

Rys.13

Wbrew temu, co wszyscy widzą, Binienda twierdzi, że materiał cylindra nie pęka, tylko roluje - jest bardzo plastyczny. Tym stwierdzeniem z pewnoscią nie zyskał by poklasku przemysłu gumowego a tym bardziej kilentów tego przemysłu.
Ten eksperyment według autora ma dowodzić iż duża liczba odłamków mogła powstać jedynie na skutek wybuchu.

Rys.14

Z podanych przez Biniendę szczątkowych informacji oraz zdjęć można wyliczyć siłę hamowania, która spowodowała rozerwanie ścianek cylindra oraz energię kinetyczną, która przekształciła się w pracę zrywania brzegów cylindra. Przykład jest bardzo odpowiedni, poniewaz zarówno w procesie niszczenia skrzydła w kolizji z pniem, wybuchowego rozrywania kadłuba jak i hamowania eksperymentalnego cylindra na przeszkodzie, mielibyśmy do czynienia z siłami, które dopiero na skutek różych przyczyn - na przykład odkształceń - wytwarzają składowe powodujace naprężenia rozciagające prowadzące do rozerwania materiału. We wszyskich przypadkach siła pierwotna jest prawie prostopadła do naprężenia rozciagającego.  

Rys.15

Sumaryczną powierzchnię brzegów wytworzonych w procesie domniemanego wybuchu fragmentującego samolot na dziesiątki tysiecy kawałków oszacowałem dzieląc przypuszczalną powierzchnę powłoki, jaka miała by ulec wybuchowej defragmentacji na stosowną liczbę części i uwzgledniając że nie wszystkie brzegi są skutkiem wybuchu. Trudno otrzymać mniejszą długość wytwotrzonego brzegu niż kilka kilometrów, co czytelnik może sprawdzić własnoręcznie. Eksploatowanie koronnego wybuchu, który miał wyjaśniać „otwarty od góry kadłub” od Szuladzinskiego, który tę tezę najprawdopodobniej sformułował na podstawie przedstawionego muu zdjęcia kadłuba tylko z jednej strony przejął sam Binienda.

Rys.16

Stan tego fragmentu można wytłumaczyć rozdarciem dachu na drzewie, po którym został półmetrowej grubości pniak.

Rys.17

Tuż obok, na brzegu kałuży widać podobny spory pniak.
Ze strzelania cylindrem Binienda powinien wyciagnąć dwa wnioski - że zniszczenie okolicy pierwszego dźwigara w zderzeniu z pniem jest więcej niż prawdopodobne oraz że wymieniana przez niego liczba odłamków mogłaby powstać jedynie na skutek eksplozji zupełnie abstrakcyjnej ilośći materiału wybuchowego i to w miarę równomiernie rozłożonego w całym samolocie.
Seria podobnych eksperymentów, w których jako przeszkodę wykorzystano by drewno brzozowe oraz takich, w których do przeszkody wykonanej z blach podobnych do tych w skrzydle i odtwarzającej okolice pierwszego dźwigara strzelano by brzozowym klockiem, pozwoliłaby uzyskać dane eksperymentalne pozwalające ocenić skutki kolizji skrzydła z brzozą . W postaci, w jakiej sam Binienda prezentuje wynik eksperymentu nie ma on żadnej wartości poznawczej – ponieważ wszyscy widzą rozerwane ścianki cylindra – poza tymi, którzy skutecznie udają, że nie widzą niczego, co nie odpowiada ich przekonaniom. Przedmiot dumy laboratorium Biniendy - potężne działo gazowe – zostało wykorzystane do pokazania czegoś, o czym lepiej wie każda kucharka – po upadnięciu na podłogę aluminiowy garnek wygląda inaczej niż szklanka i można tylko mieć nadzieję, że Binienda oszczędzi nam ogląania skutków strzelania szklanką oraz wiadomymi gumowymi obiektami.
Należy oczekiwać, że Binienda w końcu opublikuje swoje wyniki w specjalistycznym czasopiśmie naukowym. Dotychczasowy sposób ich prezentacji – ogólnikowe teksty pisane po polsku, wystąpienia przed gronami oczekującymi raczej sensacji, niż kompetentnej wiedzy, unikanie konfrontacji z fachowcami ( Binienda, mimo licznych wizyt w Polsce, nie pojawił się osobiście na żadnej konferencji smoleńskiej ) nie pozwalają na przypisanie jego wnioskom jakiejkolwiek wartości dowodowej czy poznawczej.
Binienda i Jorgensenn zaniechali sięgniecia po znane wyniki.Obaj sformułowali bardzo kategoryczne wnioski w oparciu o błędy w swoich obliczeniach - Jorgensen we wzorach, Binienda w przyjętych na początku wielokrotnie zawyżonych grubościach blach w skrzydle. Obaj nie potrafili znaleźć sposobu na wycofanie się z błędów, aby swoim opracowaniom nadać walory poznawcze. W przypadki Jorgensena odnoszę wrażenie, iż on tego nawet nie rozumie i podpiera się blogerami S24 też albo nierozumiejącymi zagadnienia, albo oszukującymi. W przypadku Biniendy jest to zręczne omijanie sytuacji, kiedy o opublikowaną po angielsku precyzyjną wypowiedź móglby być zapytany przez opiniotworcze grono.

Jeżeli do tego dodać, iż obaj powołują się na skompromitowane tezy Cieszewskiego, to ten nurt niezależnych badań, bez względu na intencje autorów, spełnia rolę prowokacji.

Krótko o efektach badań K.Nowaczyka. Nowaczyk zmyślił sobie przesunięcie wykresów parametrów lotu w stosunku do terenu o około pół sekundy, czyli około 40 metrów.

Rys.18

ATM i KBWL na wykresach oznaczała „punkt brzozy” w miejscu, oznaczonym dorysowaną zieloną przerywaną kreską i nie ma żadnych podstaw, aby twierdzić, iż jest inaczej. Synchronizacja ATM i KBWL jest zgodna z czasem wystąpienia na wykresach i w transkrypcjach sygnału markera BNDB. Zsynchronizowane w ten sposób wykresy i transkrypcje kończą się około 525 metrów przed początkiem pasa. Gwałtowne zdarzenia mają miejsce po tym momencie czasowym.

Rys.19

Jedynym zdarzeniem, o którym można mówić, iż rozpoczeęło się przed „punktem brzozy”, jest wychylenie steru kierunku w prawo.

Rys.20

W niedawnym wywiadzie Binienda powiedział o adwersarzach "Dlatego nie widzimy żadnego celu jakiejkolwiek dyskusji z tą grupą". Jest on członkiem Komitetu Naukowego Konferencji Smoleńskiej.

Opracowano na podstawie następujących źródeł:
Referaty wygłoszone na II Konferencji Smoleńskiej,
Prezentacje dla Zespołu Parlamentarnego,
Opracowanie Marii Szonert "Smolensk Maze",
Wywiady i inne wystąpienia publiczne
Publikacje autora na: mjaworski50.blogspot.com